A Mathematical Setting for Fuzzy Logics
نویسندگان
چکیده
The setup of a mathematical propositional logic is given in algebraic terms, describing exactly when two choices of truth value algebras give the same logic. The propositional logic obtained when the algebra of truth values is the real numbers in the unit interval equipped with minimum, maximum and :x = 1 x for conjunction, disjunction and negation, respectively, is the standard propositional fuzzy logic. This is shown to be the same as three-valued logic. The propositional logic obtained when the algebra of truth values is the set f(a; b) j a b and a; b 2 [0; 1]g of subintervals of the unit interval with component-wise operations, is propositional interval-valued fuzzy logic. This is shown to be the same as the logic given by a certain four element lattice of truth values. Since both of these logics are equivalent to ones given by nite algebras, it follows that there are nite algorithms for determining when two statements are logically equivalent within either of these logics. On this topic, normal forms are discussed for both of these logics.
منابع مشابه
Arrow theorems in the fuzzy setting
Throughout this paper, our main idea is to analyze the Arrovian approach in a fuzzy context, paying attention to different extensions of the classical Arrow's model arising in mathematical Social Choice to aggregate preferences that the agents define on a set of alternatives. There is a wide set of extensions. Some of them give rise to an impossibility theorem as in the Arrovian classical mod...
متن کاملEQ-logics with delta connective
In this paper we continue development of formal theory of a special class offuzzy logics, called EQ-logics. Unlike fuzzy logics being extensions of theMTL-logic in which the basic connective is implication, the basic connective inEQ-logics is equivalence. Therefore, a new algebra of truth values calledEQ-algebra was developed. This is a lower semilattice with top element endowed with two binary...
متن کاملOn the relationship between fuzzy autoepistemic logic and fuzzy modal logics of belief
Autoepistemic logic is an important formalism for nonmonotonic reasoning originally intended to model an ideal rational agent reflecting upon his own beliefs. Fuzzy autoepistemic logic is a generalization of autoepistemic logic that allows to represent an agent’s rational beliefs on gradable propositions. It has recently been shown that, in the same way as autoepistemic logic generalizes answer...
متن کاملTruth Values and Connectives in Some Non-Classical Logics
The question as to whether the propositional logic of Heyting, which was a formalization of Brouwer's intuitionistic logic, is finitely many valued or not, was open for a while (the question was asked by Hahn). Kurt Gödel (1932) introduced an infinite decreasing chain of intermediate logics, which are known nowadays as Gödel logics, for showing that the intuitionistic logic is not finitely (man...
متن کاملIntegrating Bipolar Fuzzy Mathematical Morphology in Description Logics for Spatial Reasoning
Bipolarity is an important feature of spatial information, involved in the expression of preferences and constraints about spatial positioning or in pairs of opposite spatial relations such as left and right. Another important feature is imprecision which has to be taken into account to model vagueness, inherent to many spatial relations (as for instance vague expressions such as close to, to t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems
دوره 5 شماره
صفحات -
تاریخ انتشار 1997